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 Abstract. This research work was carried out to assess undergraduate 

students’ performance in their first year and their final year in order to ascer-

tain which of them gives the student’s true ability in his/her chosen field of 

study and also to investigate the effect of some variables on their final grade. 

The Conditional Symmetry model is used in investigating the level of agree-

ment that exist between the students’ performance in their entry year and that 

of their final year in the University while the multinomial logit regression is 

used in assessing the influence of such variables as Age, Mode of entry, Gen-

der, First, Second, and Third year GPAs on their Final CGPA. The tau esti-

mate from the Conditional Symmetry model showed, in all the various cross 

classified data, that their first year performance rated the students’ perfor-

mance better than their final year performance while the multinomial logit 

showed that the estimated odds of the student making a first/second class (up-

per division) as against a second class (lower division) is higher in their first 

year than in the final year.  
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 Introduction 

 Over the years, academic institutions, from primary to tertiary, have 

employed several methods of evaluating students’ academic performance to 

determine whether or not he/she is displaying adequate knowledge, skill val-

ues and attitudes, and is meeting institutional standards for satisfactory aca-

demic progress. A grading system is used to indicate how well a student has 

met the school’s expectations for academic performance. The final grades of a 

student can be used by potential employers or further post secondary or ter-

tiary institutions to assess and compare applicants, hence the importance of 

such grades. 

        Some students at entry level start off with excellent grades but by their 

final year, one observes a decline in their academic program. Since it is still 

the same student that is still being rated at various intervals, there is need to 

check whether or not the various ratings for student performance agree , and 

the extent to which each of them are classified accurately. Also, there is need 

to check for the influence/contribution of certain variables such as age, mode 

of entry, gender etc on their overall cumulative grade point average. 

       The research work covers students’ grades for the 2009/2010 academic 

session for some departments from the Faculty of Science, University of Ilor-

in, Nigeria. These departments include Physics, Geology, Biochemistry and 

Statistics.  
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 Methodology 

 Since the major focus of this research work is to model the structure of 

agreement that exist between the student’s performance at entry level and that 

at his/her final level in the institution, we present here the method used in 

achieving this aim. We also present another approach used in estimating the 

effect of certain variables on the students’ final CGPA (Cumulative Grade 

Point Average). 

 

 Conditional symmetry model 

 The conditional symmetry model is a special case to the symmetry 

model having an extra parameter for the off-diagonal cells. It is designed for 

square tables like the one arising from the ratters’ result. The model was pro-

posed by McCullagh (1978) and is given as 
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        The conditional symmetry model is a palindromic invariant and not a 

permutation invariant (McCullagh, 1978). However, the reverse permutation 

applied to conditional symmetry model (Eq. 1) yields   
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         The conditional symmetry model as a log-linear model is given as  
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 Based on this additional parameter, the model is mainly for ordered 

classification when symmetry may not hold, often either  

jiij             ji     Or    jiij    ji   

 The model (Eq. 1) implies that for all i<j, if R1 denote the row number 

and R2 the column number of an observation made according to distribution 

then the conditional interpretation of the model (Eq. 3) is  

1 2 1 2 1 2 1 2( , / ) ( , / ) ijP R i R j R R P R j R i R R          

 This means that the cell probabilities above the main diagonal are mir-

ror image of the cell probabilities below it. 

 The generalized linear model (GLM) procedure would be used to fit 

the model (Dobson, 1945, Tanner & Young, 1985). Poisson sampling is most-

ly assumed when fitting GLM to categorical data with m>2. The log likeli-

hood function is  
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 Where    subsumes all of i .  It could be written as function of β and 

Φ because (given the xi), β determines all the i .The main way of maximizing 

β is by maximizing (Eq. 4), cf. Adejumo, 2005; Agresti, 2002; Lawal, 2003; 

Dobson, 1945; and Liu & Agresti, 2005. 

 The fact that   ii xuG )(   suggest a crude approximation estimate: 

regress )( iyG  on xi, perhaps modifying yi in order to avoid violating range 

restrictions (such as taking log (0)), and accounting for the differing variances 

of the observations. 

 The Fisher scoring iteration is the widely used technique for maximiz-

ing the GLM likelihood over β. The basic step is 
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  This can also be written as 

)()))((( )(/1)(//)1( kkkk llE     (6) 

Where l is the log-likelihood function for the entire sample Nyyy ..., 21   and 

the expectations are taken with 
)(k  . Fisher scoring simplifies to 

WZXWXXk ///)1( )(     

Where w is a diagonal matrix with 

1//2/ ))()((  iiii bGW   (7) 
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 Both equations (2.7) and (2.8) use 
)(k     and derived values of 

)(k

i and )(k

i . 

 In describing the structure of variables involved in the modification of 

the model to obtain their estimates as stated in the model, we create variables 

that take on a unique value for each diagonal cells and a unique value of each 

pair of cells, Adejumo, 2005, Adejumo et al., 2005. For example, if I=5, we 

have 
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 Multinomial logit regression 

 Here we present the basic procedures involved in fitting a logit regres-

sion when we have a polytomous or multiple response category. Although the 

response categories for this research work are ordinal, we would be treating 

them as nominal. Earlier attempt to consider the ordinal nature of response 

using the proportional/ordered logit model could not be continued with since 

the effect of the predictors was not the same across the logit models. Hence, 
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the use of multinomial logit regression seems to be reasonable (Agresti, 2002; 

Liu & Agresti, 2005). 

           Multinomial logit regression compares multiple groups through a com-

bination of binary logistic regression. The category comparisons are equiva-

lent to the comparisons of binary logistic repression. The category compari-

sons are equivalent to the comparisons for a dummy-coded dependent variable 

and the baseline category/group.  

           The choice of reference/baseline category is arbitrary but most often 

the group with the highest frequency is chosen for this research work, those 

who made second class lower division in their Cumulative Grade Point are 

chosen as the baseline category. Thus, we’d be having two equations, one for 

each of the category defined by the dependent variables. The equation will be 

used to compute the probability that an individual belongs to each category 

associated with the highest probability. 

           Pseudo R square will be used to compute the correlation (estimate the 

strength of relationship between the dependent and the independent varia-

bles).The pseudo R square reports the proportion of variation explained by the 

independent variables.  

           There are two types of statistics used in testing for individual inde-

pendent variable. They are the likelihood ratio test and the Wald test. 

           The interpretation for an independent variable focuses on its ability to 

distinguish between pairs of categories and the contributions which it makes 

to change the odds of being in one dependent variables rather than the other. 

           If an independent variable has an overall relationship with the depend-

ent variable, it might not be statistically significant in differentiating between 

pairs and categories defined by the dependent variables.   
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 Data presentation 

 

Table 1. Summary data for Department of Physics 
 

First Year new 
Final Year New 

Total Pass 3
rd

 2-2 2-1 

 Pass 1 3 1 1 6 

3
rd

 1 4 7 2 14 

2-2 0 0 0 1 1 

2-1 

Total 

0 

2 

0 

7 

0 

8 

0 

4 

0 

21 

                              
 

Table 2. Summary data for Department of Biochemistry 
 
 

year1new 
final new 

Total Pass 3rd class 2-2 2-1 1st class 

 

 

Pass 

3rd class 

1 

1 

7 

11 

4 

36 

0 

6 

0 

0 

12 

54 

2-2 0 7 27 33 0 67 

2-1 0 0 2 19 0 21 

1st class 0 0 0 0 2 2 

Total 2 25 69 58 2 156 

                      
 
 

Table 3. Summary data for Department of Geology 
 

 

First Year new 

Final Year New 

Total Pass 3
rd

 2-2 2-1 

 Pass 3 10 8 2 23 

3
rd

 4 11 17 4 36 

2-2 0 4 17 5 26 

                            2-1 

Total 

0 

7 

0 

25 

1 

43 

0 

11 

1 

86 
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Table 4. Summary data of Department of Statistics 

   

 

year1new 
final new 

Total Pass 3rd class 2-2 2-1 1st class 

 

 

Pass 

3rd class 

0 

0 

0 

2 

0 

3 

0 

0 

0 

0 

0 

5 

2-2 1 0 5 7 1 14 

2-1 0 0 4 7 3 14 

1st class 0 0 0 0 2 2 

Total 1 2 12 14 6 35 

         
 

Table 5. Combined data 

 

year1new 
final new 

Total pass 3rd class 2-2 2-1 1st class 

 

 

Pass 

3rd class 

5 

6 

20 

28 

13 

63 

3 

12 

0 

0 

41 

109 

2-2 1 11 49 46 1 108 

2-1 0 0 7 26 5 38 

1st class 0 0 0 0 2 2 

Total 12 59 132 87 8 298 

 
 

 Analysis, results and conclusion 

 The algorithm written based on the assumptions and properties of the 

model, fit the model for i=1, 2,…,I as described earlier: 

                 )()log( 2121 jiIm
RR

ij

R

j

R

iij                        

   i, j = 1, 2. . . I 

           The following results are based on the data 1-5 which contain student 

totals of 21 (for Physics); 86 (for Geology); 156 (for Biochemistry); 35 (for 

Statistics); and 298 (for the combined analysis). 
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 Parameters estimate under conditional symmetry model 

   

Table 6. Department of Physics 

COEFFICIENTS VALUE S.E Z-VALUE 

INTERCEPT -1.93E+01 9.427E+03 -0.002 

1  1.93E+01 9.427E+03 0.002 

λ₂ 2.069E+01 9.427E+03 0.002 

λ₃ 1.892E-08 1.333E+04 1.42E-12 

λ₁₂ 2.062E+01 9.427E+03 0.002 

λ₁₃ 1.924E+01 9.427E+03 0.002 

λ₁₄ 1.924E+01 9.427E+03 0.002 

λ₂₃ 2.118E+01 9.427+03 0.002 

λ₂₄ 1.993E+01 9.427E+03 0.002 

λ₃₄ 1.924E+01 9.427E+03 0.002 

 -2.708 1.033 -2.622 

Goodness of Fit Statistics (degree of freedom = 5, no. of iterations = 17)  

G² 2.9827 X² 3.200 

. 

Table 7. Department of Geology 

COEFFICIENTS VALUES S.E Z-VALUE 

Intercept -18.3026 5717.532 -0.002 

λ₁ 19.4012 5717.532 0.003 

λ₂ 20.7005 5717.532 0.004 
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λ₃ 21.1358 5717.532 0.004 

λ₁₂ 20.763 5717.532 0.004 

λ₁₃ 20.2033 5717.532 0.004 

λ₁₄ 18.8170 5717.532 0.004 

λ₂₃ 21.1684 5717.532 0.004 

λ₂₄ 19.9107 5717.532 0.003 

λ₃₄ 19.9157 5717.532 0.003 

 
-1.6314 0.3645 -4.476 

  Goodness of Fit Statistics (degree of Freedom =5, iteration = 16) 

         G
2
 6.413            X

2
 4.375 

 

Table 8. Department of Biochemistry 

COEFFICIENTS VALUE          S.E      Z-VALUE 

Intercept -21.3026 25624.1998 -0.001 

λ1 21.3026 25624.1998 0.001 

λ2 23.7005 25624.1998 0.001 

λ3 24.5984 25624-1998 0.001 

λ4 24.2470 25624.1998 0.001 

λ12 23.2470 25624.1998 0.001 

λ13 22.5812 25624.1998 0.001 

λ14 1.0103 29517.4057 3.24E-05 

λ15 1.0103 29517.4057 3.24E-05 

λ23 24.9562 25624.1998 0.001 
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λ24 22.9867 25624.1998 0.001 

λ25 1.0103 29517.4057 3.42E-05 

λ34 24.7503 25624.1998 0.001 

λ35 1.0103 29517.4057 3.42E-05 

λ45 21.8881 25624.1998 0.001 

 -2.1748 0.3337 - 6.517 

          Goodness of Fit Statistics (degree of Freedom = 9, iteration =19) 

            G
2
 5.0229                 X

2
 3.9116 

  

Table 9. Department of Statistics 

 

COEFFICIENTS VALUES S.E Z-VALUE 

Intercept 0.6931 0.7071 0.980 

λ1 -21.00 1.554E+04 -0.001 

λ2 3.446E-17 1.000 3.45E-17 

λ3 0.9163 0.8367 1.095 

λ4 1.253 0.8018 1.562 

λ12 -20.54 1.061E+04 -0.002 

λ13 -0.9985 1.232 -0.810 

λ14 -20.54 1.061E+04 -0.002 

λ23 0.1001 0.9231 0.108 

λ24 -20.54 1.061E+04 -0.002 

λ25 -20.54 1.061E+04 -0.002 
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λ34 1.399 0.7808 1.792 

λ35 -0.9985 1.232 -0.810 

λ45 0.1001 0.9231 0.108 

 -1.030 0.5210 -1.976 

Goodness of Fit Statistics (degree of freedom = 9, iteration = 18) 

              G
2
          7.4801              X

2
    5.8727 

 
 

 

Table 10. Combined data 

COEFFICIENTS VALUES S.E      Z-VALUE 

Intercept 0.6931 0.7071 0.980 

λ1 0.9163 0.8367 1.095 

λ2 2.6391 0.7319 3.606 

λ3 3.1987 0.7214 4.434 

λ4 2.5649 0.7338 3.495 

λ12 2.4223 0.7344 3.298 

λ13 1.8032 0.7565 2.384 

λ14 0.2628 0.9133 0.288 

λ15 -19.1028 5616.5365 -0.003 

λ23 3.4682 0.7172 4.836 

λ24 1.6491 0.7209 4.348 

λ25 -19.1028 5616.5365 -0.003 

λ34 3.1345 0.7209 4.348 

λ35 -0.8358 1.2251 -0.682 

λ45 0.7736 0.8371 0.924 

 -1.8749 0.2148 -8.729 

Goodness of Fit Statistics (degree of freedom = 9, iteration =19) 

          G
2
          8.5141            X

2
  5.9954 

 

           From the results in the Tables 6-10, based on the Goodness-of-fit statis-

tics and their degrees of freedom, we would observe that the models for Phys-

ics, Geology, Biochemistry, Statistics, and the combined data fit well. 
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          The tau values for Physics, Geology, Biochemistry, Statistics and the 

Combined data are -2.708,-1.6314,-2.1748,-1.030,and -1.8749 whose expo-

nent are 0.0667,0.1957,0.1136,0.357, and 0.1534 respectively which give the 

odds that their Final year performance rates the students compared to that of 

their First year performance.  

 Also, we observe from the fitted (expected) values that the estimated 

probabilities of being classified into cell (i,j) for R₁<R₂ is the same for R₁>R₂ 

where R₁ and R₂ denote the First year Final year respectively. That is,    

 

ijRRiRjRPRRRiRP  )/,()/,( 21212121  

          The independent variables considered in this research work are Age at 

entry, Gender, Mode of entry, First year GPA, second year GPA and their Fi-

nal year GPA. For these, Gender, Mode of entry and Age at entry were treated 

as CATEGORICAL variables while the others as CONTINUOUS variables. 

 For Age, we have two (2) categories: (i) <20 and (ii) ≥20 (which is the 

reference category coded 0). 

 For Gender, we have two categories (i) males (which is the reference 

category coded 0) and, (ii) females. 

 For Mode of Entry, we have Remedial, UME and Direct Entry (De) 

with Remedial being the reference category. 

 The model to be estimated is: 

femaleDeUMEagenewyyyi
76543322110

2

log 












 

Where Y1 is First year GPA, Y2 is Second year GPA, Y3 is Final year GPA, 

and De is Direct entry. 

i = Probability of making category i on their CGPA 

2 = Probability of making a second class lower division (2²) 
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






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classCGPAif

classpassCGPAif
i

st

rd

1/23

3/1
1

 

Log likelihood = -74.001538 

Number of observations: 298 

Likelihood ratio Chi-square (14) = 479.97 

P-value = .0000 

Pseudo R²= 0.7643 

 

Table 11. Summary table for multinomial logit regression 

 

CGPPANEW 

  
S.E Z P</Z/ 95% CONFI-

DENCE IN-

TERVAL 

Exp(


 ) 

Pass/3
rd

 class 

Y1 new -1.3846 0.5153 -2.69 0.007 -2.3945        -

0.3746 

0.2504 

Y2new -4.9509 1.0694 -4.63 0.000 -7.0468        -

2.8549 

0.0071 

Yfinal -2.0481 0.5929 -3.45 0.001 -3.2101        -

0.8861  

0.1290 

Agenew -0.1339 0.5975 -0.22 0.823 -1.3050          

1.0373 

0.8747 

UME 0.363 0.7011 0.52 0.604 -1.0109          

1.7374 

1.4379 

De -0.3574 1.0357 -0.35 0.730 -2.3873          

1.6725 

0.6995 

Female 0.1798 0.5862 0.31 0.759 -0.9690          

1.3287 

1.1970 

Constant 19.2526 3.4724 5.54 0.000 12.4467       

26.0585 

 

2
1
/FIRST CLASS 

Y1new 3.3519 1.0177 3.29 0.001 1.3573           

5.3466 

28.5577 

Y2new 3.1768 0.7344 4.32 0.001 1.7367           

4.6168 

23.9693 

Y finalnew 2.7657 0.7347 4.32 0.000 1.7367           

4.3387 

15.8896 

Agenew 0.5134 0.8052 0.64 0.524 -1.0645         

2.0916 

1.6710 

UME -0.6258 0.8299 -0.75 0.451 -2.2523         

1.0007                      

0.5348 



288 
 

De 0.7421 1.0629 0.70 0.485 -1.3411         

2.8253        

2.1000 

Female -1.1551 0.7411 -1.56 0.119 -2.6075         

0.2974 

0.3150 

Constant -32.2752 5.8890 -5.48 0.000 -43.8174    -

20.7330    

 

 

 From Table 11, the logit for (i) pass/third class vs. 2² is  

logit ( 1 )= 19.2526 - 1.3846Y1 - 4.9509Y2 - 2.0481Yfinal - 0.1339agenew + 

0.3632UME   -  0.3574De + 0.1798female 

 (ii) 2¹/first class vs. 2² is 

Logit ( 3 ) = -32.2752 + 3.3519Y1 + 3.1768Y2 + 2.7657Yfinal + 

0.5134agenew – 0.6258UME + 0.7421De – 1.1551female 

0H : β₁ = β₂ = . . . = βк     vs.      H₁:   Not 0H
      

 = 0.05 

         The likelihood Ratio chi-square statistic is reported as 497.97 with 14 

degrees of freedom and a p-value of 0.001. So, we conclude that there exist an 

overall relationship between the response variable and the independent varia-

bles. The Pseudo R
2
 value is reported as 0.7643 which indicates a strong posi-

tive correlation between the response variable and the explanatory variables. It 

implies also that the proportion of variation in the response variable explained 

by the independent variables is about 76.43%. 

 Using the Wald statistic, 

H0: βi = 0   vs    H₁: β  0     = 0.05     Z = 


 /S.E (


 ) 

 Y1 Y2 Yfinal Agenew UME De females 

pass/ third 

class   vs    

2² 

0.007* 0.001* 0.001* 0.823 0.604 0.730 0.759 

2¹ /  first 

class       vs    

2² 

0.001* 0.001* 0.001* 0.524 0.451 0.485 0.119 

*values are significant in distinguishing between logits at α=0.05 
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Table 12. Inference about estimate of β  for different categories 

 Category 1: (Pass/ 3
rd

 Class 

vs 2
2
) Exp(β) 

Category 2: (2
1
/ 1

st
 Class vs 

2
2
) Exp(β) 

1
st
 year (Y1) 0.250 28.5577 

2
nd

 year (Y2) 0.0071 23.9693 

Final year (Y3) 0.1290 15.8896 
. 

          Category 1indicates that for a one category rise in the students’ perfor-

mances in their first, second and final year, controlling for other factors, the 

estimated odds of making a pass/ third class multiply by 0.250, 0.0071 and 

0.1290 respectively. That is, the odds of making a pass/third class as against a 

second class lower division reduce respectively by about 75%, 99.29% and 

87.1% for every one category rise in their performances. 

          Also, Category 2 implies that for every one category rise in their first, 

second and final year performances, controlling for other factors, the estimat-

ed odds of making a 2¹ / first class multiply by 28.5577, 23.9693 and 15.8896 

respectively. That is, they are respectively about 29, 24 and 16 times more 

likely to make a 2¹ / first class than a 2² for every rise in their first year per-

formances. 

 

Table 13. Inference on the Conditional Symmetry’s tau estimate 

 

 Tau (τ) Exp(τ) 

Physics -2.708 0.0667 

Geology -1.6314 0.1957 

Biochemistry -2.1748 0.1136 

Statistics -1.030 0.357 

Overall -1.8749 0.1534 

 

. 

          This implies that the estimated probability for each of Physics, Geology, 

Biochemistry, Statistics and overall is that their final year GPA is more con-

sistent in rating the students’ performance better respectively is about 0.0667, 
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0.1957, 0.1136, 0.357 and 0.1534 times the probability that their first year 

GPA rates them better.   

        All these results point to the fact that the students’ performance in their 

first year GPA is more consistent in rating the students’ performance better. 

This can be seen clearly by taking the reciprocal of the various results. 

        It would be noted that in the First year GPA, the odds of making a Sec-

ond class upper/ First class is about twenty-nine (29) times that of making a 

Second class lower; in their Final year, it is only about 16 times. 

       Drawing from the results obtained from the analysis and their various in-

terpretations, we may come to the conclusion that Students’ grades in their 

First Year gives a better picture of their performance than their Final Year.  
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