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 Abstract. Bayesian analysis of variance (ANOVA) is gaining ac-

ceptance as an alternative to the hypothesis testing based on p-values in many 

areas of scientific research. Its Bayes factors are constantly developed and 

modified to suit prevailing situations in hypothesis testing. We transformed the 

Bayes factor proposed by Wang & Sun (2013) for one random effects model 

using Natural Log of Gamma Function ( ) approximation. The result 

shows that our modified Bayes factor proved more efficient than the Wang & 

Sun (2013) Bayes factor in testing the hypothesis of zero between factor varia-

bility when the sample size becomes large.  Keywords: Bayesian approach, 

Bayes factor, evidence, hypothesis testing, analysis of variance 

           

 

 Introduction 

 The Bayesian approach to testing a hypothesis about the variance com-

ponent(s) is computed using the Bayes factor  , which com-

pares the marginal densities (also known as marginal likelihoods) of the data 
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under the two models,  (one or more of the variance components is zero) 

and  (variance unrestricted) suggested by the hypotheses. Analysis of Vari-

ance and Regression Analysis are still the most popular tests in many scientific 

researches; hence developing Bayes factor for these models is a necessary pre-

cursor for widespread adoption of the Bayesian method. Several Bayes factors 

have been proposed over time for student t test, Analysis of Vari-

ance(ANOVA) among others. Some of the proposed Bayes factors are Bayesi-

an Information Criterion (BIC)-Based (Wagenmakers, 2007; Masson, 2011; 

Faulkenberry, 2018), while some other Bayes factors are P-value based (Sellke 

et al., 2001; Held & Ott, 2018).   

 Wang & Sun (2013) and Raftery (1995) considered Bayesian hypothe-

sis testing for the balanced one-way random effects model. A special choice of 

the prior formulation for the ratio of variance components was shown to yield 

an explicit closed-form Bayes factor without integral representation which can 

be calculated easily using statistical packages. Furthermore, they studied the 

consistency issue of the resulting Bayes factor under three asymptotic scenari-

os: either the number of units goes to infinity, the number of observations per 

unit goes to infinity, or both go to infinity. Finally, Wang & Sun (2013) illus-

trated the behavior of the proposed approach using simulation studies. 

 Egburonu (2018) examined the Wang & Sun (2013) Bayes factor under 

two cases namely: Case 1: factor unit is fixed while observation per unit is in-

creasing (i.e., random). Case 2: observation per unit is fixed while number of 

factor unit is increasing (i.e., random). In all the two cases, the Bayes factors 

was consistent in increasing the weight of evidence in support of the null hy-

pothesis of zero between factor variability; but as the sample sizes became 

large, the Wang & Sun (2013) Bayes factor become impracticable. This im-

practicality situation was as a result of the Gamma function involved in its 

computational list. 
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 Methodology 

 Wang & Sun Bayes factor for random effect model 

 Consider the balanced one-way analysis-of-variance (ANOVA) ran-

dom effects model, 

 

yij =  μ + αi  + εij     i= 1,2, …, k and j = 1,2, …, m (1) 

 

where,  is the jth observation associated with the unit i and μ represents the 

unknown intercept. Here  is the number of factor/treatment units and  

 is the number of observations per unit. It is assumed that the random 

effect (  and the error term (  are mutually independent, and that 

 and  for all i and j, The unknown parameters 

( are called variance components. 

 The Wang & Sun (2013) Bayes factor for obtaining the weight of evi-

dence in support of the null hypothesis is given by 

 

 

























 

















 



2

2

01

22

1

2

)1(
2

1
kmk

SST

SSE

kmkk

mk

BF  

 

(2) 

where 

 

 
2

1 1

.
 


k

i

m

j

iij yySSE  
 

(3) 

 

is the sum of error square, and 

 
2

1 1


 


k

i

m

j

ij yySST  
 

(4) 

 



255 
 

is the sum total squares. 

 Wang & Sun (2013) has established through simulation studies that the 

Bayes factor in Eq. (2) above is robust to a choice of hyper parame-

ter . 

 

 Transformed Bayes factor 

 To resolve the problem of impracticability of the Wang & Sun (2013) 

Bayes factor for large sample sizes, we recommend an transformation of the 

Wang & Sun (2013) Bayes factor using the Carl Friedrich Gauss Natural Log 

of Gamma Function ( ) approximation. 

 Carl Friedrich Gauss Natural Log of Gamma ( ) approxima-

tion is given by: 
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 The transformed Bayes factor is given by: 
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 Let us make the following transformations: 
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 Then Eq. (6) becomes, 
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 Substituting the values of A, B, C, D, E and F into Eq. (14), then we 

obtain:  
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where,  
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 Eq. (15) is the modified Bayes factor that will be used to carry out one-

way ANOVA with random effects. The Bayes factor in Eq. (15) performs bet-

ter than the Wang & Sun (2013) in terms of large sample sizes. 

 The proposed Bayes factor will be interpreted using the Table 1. 

 

Table 1.  Bayes factor interpretation 

 

 
Evidence in support of the null  hy-

pothesis 

0 to 1.10 Not worth more a mere mention 

1.1 to 2.30 Substantial 

2.30 to 4.61 Strong 

> 4.61 Decisive 

 

 Data analysis 

 To illustrate the transformed Bayes factor, we used two extreme Cases 

in which the Wang & Sun (2013) Bayes factors were not practicable in the 

simulation studies carried out by Egburonu (2018).  

Case 1:  

Case 2:  

 

 Simulation study 

 Data sets were simulated using the native functions implemented in the 

R software for statistical computing (version 3.4.0 for Windows, R Core Team 

2017) from a standard normal population . Simulation was 

generated using random seed sets to simplify replication. 
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 Case 1:  

 Hypothesis for Case 1: we seek to test the hypothesis: 

 

0: 2

0 H    against   0: 2

1 H  (17) 

 

Table 2. Simulated data for CASE 1 ( ) 

 

F
a
ct

o
rs

/T
re

a
tm

en
t 

U
n

it
s 

(k
) 

 Observations per factor (m) 

A 
-0.9 0.18 1.59 -1.13 -0.08 0.13 0.71 -0.24 1.98 -0.14 0.42 0.98 -0.39 -1.04 1.78 

B 1.07 0.26 -0.31 -0.75 -0.86 2.05 0.94 2.01 -0.42 -0.35 -1.03 -0.25 0.47 1.36 0.56 
C 0.3 -1.02 2.87 0.22 -0.97 0.38 -0.12 -0.35 0.6 0.23 1.03 -0.52 1.8 -1.43 0.14 

D -0.32 -0.32 0.88 -1.89 0.73 0.79 0.19 0.92 1.24 -0.68 0.52 -0.47 -0.5 -1.97 -0.57 
E 

-0.21 -2.72 -1.01 -0.83 0.86 -0.24 -0.7 -2.45 1.15 0 0.06 -1.11 0.2 -1.23 -0.13 

 

-

2.31 
0.88 0.04 1.01 0.43 2.09 -1.2 1.59 1.95 0 

-

2.45 
0.48 -0.6 0.79 0.29 0.74 0.32 1.08 

0.46 1.23 1.15 0.11 
-

0.78 
1.24 0.14 1.71 

-

0.43 

-

1.04 
0.54 

-

0.67 
0.64 

-

1.72 

-

1.74 
0.69 0.33 0.87 

0.45 1.21 
-

1.32 

-

1.14 
1.68 0.4 0.72 

-

0.79 
1.92 0.07 0.47 

-

0.09 
0.89 

-

0.37 
2.26 1.57 

-

1.95 

-

0.62 

0.48 1.22 0.12 0.09 -0.2 -0.5 1.09 0.92 0.36 0.3 0.53 0.97 1.91 1.5 
-

0.31 
0.95 

-

0.09 

-

0.19 

-

1.31 
1.11 

-

1.01 
1.58 0.29 0.74 

-

1.26 
1.41 0.73 1.28 0.9 0.53 0.78 

-

1.19 
0.35 

-

1.17 

-

0.34 

-

1.02 

 

-
0.28 

-
0.78 

-0.6 
-

1.73 
-0.9 

-
0.56 

-
0.25 

-
0.38 

-
1.96 

-
0.84 

1.9 0.62 1.99 
-

0.31 
-

0.09 
-

0.18 
-1.2 

-
0.84 

-
2.02 

1.21 1.2 1.03 0.79 2.11 
-

1.45 
-

0.58 
0.41 

-
0.81 

0.09 0.75 
-

0.65 
0.66 0.55 

-
0.81 

-1 0.98 

-
0.03 

-
1.72 

-
1.05 

-
0.57 

0.48 0.1 
-

0.59 
-

0.08 
2.89 1.17 0.55 0.78 

-
0.57 

0.1 0.28 
-

0.47 
-

0.46 
0.5 

0.73 1.03 
-

0.31 
0.77 

-
0.02 

1.49 0.45 0.17 0.39 
-

1.29 
0.23 0.72 

-
0.25 

-
0.32 

0.98 0.83 0.38 1.46 

1.32 0.04 
-

0.08 
-

0.44 
0.21 

-
0.01 

-
0.45 

-2.1 
-

0.28 
-

1.57 
0.3 0.25 

-
0.14 

-
0.71 

1.07 
-

2.02 
0.51 

-
0.61 

 

 

 

2.07 
-

0.56 
1.28 

-

1.05 

-

1.97 

-

0.32 
0.94 1.14 1.67 

-

1.79 
2.03 -0.7 0.16 0.51 

-

0.82 
-2 

-

0.48 
0.08 

-

0.17 
0.72 

-

0.84 
1.28 

-

1.34 
0.77 0.46 0.27 0.67 0.4 

-

0.64 

-

0.27 
0.36 

-

1.31 

-

0.88 
2.08 -2.1 

-

1.24 

-

0.41 

-

0.18 

-

0.32 
0.84 0.48 -0.3 

-

0.29 
0.98 

-

0.17 
1.34 -0.1 

-

0.32 

-

1.91 

-

0.65 
-1.4 1.93 0.46 0.53 

0.67 
-

0.37 
1.55 2.33 1.4 

-

0.94 
0.83 0.73 0.12 1.56 1.42 

-

0.36 
-0.5 

-

1.88 

-

1.14 

-

0.46 
1.17 

-

0.32 

0.03 
-

0.25 

-

0.98 
1.58 

-

0.27 

-

0.51 
2.08 0.67 0.2 

-

0.04 
0.12 

-

0.26 

-

0.67 
0.94 0.49 0.44 

-

0.07 
1.3 
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-0.9 
-

0.92 
0.33 

-

0.14 
0.43 

-

0.05 

-

0.91 
1.3 0.77 1.05 

-

1.41 
1 -1.7 

-

0.53 

-

1.37 

-

2.21 
1.82 

-

0.65 

0.99 1.09 0.84 0.06 0.32 -0.9 
-

0.65 

-

0.26 

-

0.93 
0.82 

-

1.62 

-

1.03 

-

1.26 
0.39 

-

1.13 
0.54 1.18 0.03 

-

0.04 

-

2.72 

-

0.05 
0 

-

1.23 
0.25 1.61 

-

0.04 
1.03 -0.4 0.07 2.04 0.65 1.28 

-

0.63 
1.35 1.67 1.17 

0.04 
-

0.18 
2.28 -0.8 1.23 

-

0.03 

-

0.66 

-

0.25 
2.53 0.16 0.75 

-

0.43 

-

0.74 
0.14 

-

0.72 
1.32 

-

1.57 
0.05 

-

1.36 
1.55 1.45 0.93 

-

1.31 
0.28 -0.8 

-

0.38 

-

0.61 

-

2.43 

-

0.51 

-

1.07 
0.14 

-

0.89 

-

0.08 
1.6 -1.2 

-

1.66 

 

-

0.28 

-

0.39 
0.39 1.6 1.68 

-

1.18 

-

1.36 

-

1.51 

-

1.25 
1.96 0.01 

-

0.84 
-0.6      

0.52 
-

0.65 
0.5 

-

1.27 

-

0.08 

-

1.35 

-

0.27 
1.09 0.7 

-

0.44 

-

0.79 

-

0.86 
-0.75      

0.01 1.31 
-

0.09 

-

1.13 
0.59 0.09 

-

0.23 
1.49 

-

0.35 
0.42 -2.1 

-

1.37 
-0.68      

-

0.03 
1.41 0.83 0.18 1.34 1.2 0.87 

-

0.12 
0.34 

-

0.99 
1.13 0.23 0.92      

0.07 
-

0.95 

-

0.95 
0.87 0.16 1.3 

-

1.08 
0.39 

-

0.03 

-

1.26 

-

0.94 
-0.2 0.14      

  

 Source: Simulation result 

 

 

 
 

 Wang & Sun Bayes factor for case 1 (k = 5 and m = 100) 

 The Wang and Sun (2013) Bayes factor for obtaining the weight of ev-

idence in support of the null hypothesis for ( )at  

is computed as follows: 

 

 

 

 

 

 

(18) 
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 The Bayes factor , for testing the null hypothesis under Case 

1(  signifies that the data is “out of the range of the 

Gamma function”. By implication, its inverse  is also “out of the range of 

the Gamma function”. 

 

 Transformed Bayes factor for case 1 (k = 5 and m = 100) 

 The transformed Bayes factor for obtaining the weight of evidence in 

support of the null hypothesis for ( )at  is com-

puted as follows: 

 

 

 

 

 

 

 

 

(19) 

 

But, 
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 Hence, 

 



261 
 

 

 

       (21) 

 Then  

 

                                        (22) 

Table 3. Decision rule for proposed Bayes factor interpretation 

 

 
Evidence in support of the null  hy-

pothesis 

0 to 1.10 Not worth more a mere mention 

1.1 to 2.30 Substantial 

2.30 to 4.61 Strong 

> 4.61 Decisive 

 

 The  indicate strong evidence in support of the 

null hypothesis of no variability between the five treatments.  

( ) stated in equation (3.1) under Case 1 

( . This can be seen in Table 3. This is a more informa-

tive technique compared to the Wang & Sun (2013) Bayes factor. 

 

 

 Case 2 (k = 35 and m = 10) 

 Hypothesis for case 2: we seek to test the hypothesis: 
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0: 2

0 H    against   0: 2

1 H  (23) 

 

Table 4. Simulated data for CASE 2B ( ) 

 

F
a

ct
o

rs
/T

re
a

tm
en

t 
U

n
it

s 
(k

) 

 Observations per factor (m) 

A 
-0.9 0.18 1.59 -1.13 -0.08 0.13 0.71 

-

0.24 
1.98 

-

0.14 

B 
0.42 0.98 -0.39 -1.04 1.78 

-

2.31 
0.88 0.04 1.01 0.43 

C 
-0.38 -1.96 -0.84 1.9 0.62 1.99 

-

0.31 

-

0.09 

-

0.18 
-1.2 

D 
2.09 -1.2 1.59 1.95 0 

-

2.45 
0.48 -0.6 0.79 0.29 

E 
0.74 0.32 1.08 -0.28 -0.78 -0.6 

-

1.73 
-0.9 

-

0.56 

-

0.25 

F 
-0.84 2.07 -0.56 1.28 -1.05 

-

1.97 

-

0.32 
0.94 1.14 1.67 

G 
-1.79 2.03 -0.7 0.16 0.51 

-

0.82 
-2 

-

0.48 
0.08 -0.9 

H 
-0.92 0.33 -0.14 0.43 -0.05 

-

0.91 
1.3 0.77 1.05 

-

1.41 

I 
1 -1.7 -0.53 -1.37 -2.21 1.82 

-

0.65 

-

0.28 

-

0.39 
0.39 

J 
1.6 1.68 -1.18 -1.36 -1.51 

-

1.25 
1.96 0.01 

-

0.84 
-0.6 

K 
0.4 0.72 -0.79 1.92 0.07 0.47 

-

0.09 
0.89 

-

0.37 
2.26 

L 
1.07 0.26 -0.31 -0.75 -0.86 2.05 0.94 2.01 

-

0.42 

-

0.35 

M 
-1.03 -0.25 0.47 1.36 0.56 0.46 1.23 1.15 0.11 

-

0.78 

N 
1.24 0.14 1.71 -0.43 -1.04 0.54 

-

0.67 
0.64 

-

1.72 

-

1.74 

O 
2.04 0.65 1.28 -0.63 1.35 1.67 1.17 0.01 1.31 

-

0.09 

P 
-2.72 -0.05 0 -1.23 0.25 1.61 

-

0.04 
1.03 -0.4 0.07 

Q 
0.69 0.33 0.87 -2.02 1.21 1.2 1.03 0.79 2.11 

-

1.45 

R 
-0.32 -0.32 0.88 -1.89 0.73 0.79 0.19 0.92 1.24 

-

0.68 

S 
0.5 -0.41 -0.18 -0.32 0.84 0.48 -0.3 

-

0.29 
0.98 

-

0.17 

T 
-0.58 0.41 -0.81 0.09 0.75 

-

0.65 
0.66 0.55 

-

0.81 
-1 

U 
0.98 -0.17 0.72 -0.84 1.28 

-

1.34 
0.77 0.46 0.27 0.67 
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V 
-1.03 -1.26 0.39 -1.13 0.54 1.18 0.03 0.52 

-

0.65 
0.5 

W 
0.4 -0.64 -0.27 0.36 -1.31 

-

0.88 
2.08 -2.1 

-

1.24 
0.99 

X 
1.09 0.84 0.06 0.32 -0.9 

-

0.65 

-

0.26 

-

0.93 
0.82 

-

1.62 

Y 
-1.27 -0.08 -1.35 -0.27 1.09 0.7 

-

0.44 

-

0.79 

-

0.86 

-

0.75 

Z 
0.3 -1.02 2.87 0.22 -0.97 0.38 

-

0.12 

-

0.35 
0.6 0.23 

AA 
1.03 -0.52 1.8 -1.43 0.14 0.45 1.21 

-

1.32 

-

1.14 
1.68 

BB 
1.57 -1.95 -0.62 -0.03 -1.72 

-

1.05 

-

0.57 
0.48 0.1 

-

0.59 

CC 
-0.08 2.89 1.17 0.55 0.78 

-

0.57 
0.1 0.28 

-

0.47 

-

0.46 

DD 
1.34 -0.1 -0.32 -1.91 -0.65 -1.4 1.93 0.46 0.53 

-

0.04 

EE 
-1.13 0.59 0.09 -0.23 1.49 

-

0.35 
0.42 -2.1 

-

1.37 

-

0.68 

FF 0.52 -0.47 -0.5 -1.97 -0.57 0.48 1.22 0.12 0.09 -0.2 

GG 
-0.5 1.09 0.92 0.36 0.3 0.53 0.97 1.91 1.5 

-

0.31 

II 
0.17 0.39 -1.29 0.23 0.72 

-

0.25 

-

0.32 
0.98 0.83 0.38 

JJ 
0.95 -0.09 -0.19 0.73 1.03 

-

0.31 
0.77 

-

0.02 
1.49 0.45 

 

 

 

 

 
 

 

 Wang & Sun Bayes factor for case 2E (k = 35 and m = 10) 

 The Wang and Sun (2013) Bayes factor for obtaining the weight of ev-

idence in support of the null hypothesis for ( )at  

is computed as follows: 
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      (24) 

 

 The Bayes factor , for testing the null hypothesis of no between 

treatment variability under Case 2(  signifies “unde-

fined”. Indicating that its inverse It means that there is entirely no 

evidence in support of the alternative hypothesis at this point. 

 

 Transformed Bayes factor for case 2 (k = 35 and m = 10) 

 The transformed Bayes factor for obtaining the weight of evidence in 

support of the null hypothesis for case2 ( )at  is 

computed as follows: 

 

 

 

     (25) 
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 But, 

 
(26) 

 Hence, 

 

          (27) 

 

 

 Then  

 

                                             (28) 

 The  indicates a decisive evidence in support 

of the null hypothesis of no between factor variability in the thirty-five factors. 

( ) stated in equation (3.2) under Case 

2( . This can be seen in Table 5. This is a more informa-

tivetechnique compared to the Wang & Sun (2013) especially for handling 

One Way ANOVA with random effects for large sample sizes. 
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Table 5.  Decision rule for proposed Bayes factor interpretation 

 

 
Evidence in support 

of the null  hypothe-

sis 

  

0 to 1.10 Not worth more a 

mere mention 

  

1.1 to 2.30 Substantial   

2.30 to 4.61 Strong   

> 4.61 Decisive   

 

 Conclusion 

 The transformed Bayes factor has proved to be more efficient in testing 

the null hypothesis of zero between treatment variability for the fac-

tors/treatments been compared. In all the two cases (1 and 2), the transformed 

Bayes factor showed strong and decisive evidence in favour of the null hy-

pothesis respectively. This result is contrary to the Wang and Sun (2013) that 

reported an “Out of Range of the Gamma function”; thereby leading to a loss 

of information with respect to the two cases.  The modified Bayes factor pro-

vides smaller values than the Wang & Sun (2013) and Faulkenberry (2018) 

Bayes factors. Although computationally intricate, the proposed Bayes factor 

will give researchers an insight into the One Way ANOVA with random ef-

fects from a Bayesian perspective. 
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